Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.324
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
2.
Environ Microbiol Rep ; 16(2): e13197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600035

RESUMO

Many microbial genes involved in degrading recalcitrant environmental contaminants such as polycyclic aromatic hydrocarbons (PAHs) have been identified and characterized. However, all molecular mechanisms required for PAH utilization have not yet been elucidated. In this work, we demonstrate the proposed involvement of lasso peptides in the utilization of the PAH phenanthrene in Sphingomonas BPH. Transpositional mutagenesis of Sphingomonas BPH with the miniTn5 transposon yielded 3 phenanthrene utilization deficient mutants, #257, #1778, and #1782. In mutant #1782, Tn5 had inserted into the large subunit of the naph/bph dioxygenase gene. In mutant #1778, Tn5 had inserted into the B2 protease gene of a lasso peptide cluster. This finding is the first report on the role of lasso peptides in PAH utilization. Our studies also demonstrate that interruption of the lasso peptide cluster resulted in a significant increase in the amount of biosurfactant produced in the presence of glucose when compared to the wild-type strain. Collectively, these results suggest that the mechanisms Sphingomonas BPH utilizes to degrade phenanthrene are far more complex than previously understood and that the #1778 mutant may be a good candidate for bioremediation when glucose is applied as an amendment due to its higher biosurfactant production.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Fenantrenos/metabolismo , Peptídeos/genética , Glucose
3.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
4.
J Hazard Mater ; 470: 134227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581879

RESUMO

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Fósforo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Enterobacter/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Fósforo/metabolismo , Fósforo/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
5.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629562

RESUMO

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Solo , Areia , Ácido Cítrico , Poluentes do Solo/análise , China , Grão Comestível/química
6.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630443

RESUMO

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Assuntos
Verduras , Águas Residuárias , Brassinosteroides , Esgotos , Cádmio , Antioxidantes , Silício , Chumbo , Biodegradação Ambiental , Água
7.
J Hazard Mater ; 470: 134300, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631248

RESUMO

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Assuntos
Cádmio , Percepção de Quorum , Cádmio/química , Rhizobiaceae/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
8.
J Hazard Mater ; 470: 134235, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608585

RESUMO

The misuse of aromatic amines like 4-chloroaniline (4-CA) has led to severe environmental and health issues. However, it's difficult to be utilized by microorganisms for degradation. Nano-zero-valent iron (nZVI) is a promising material for the remediation of chloroaniline pollution, however, the synergistic effect and mechanism of nZVI with microorganisms for the degradation of 4-CA are still unclear. This study investigated the potential of 4-CA removal by the synergistic system involving nZVI and 4-CA degrading microbial flora. The results indicate that the addition of nZVI significantly enhanced the bio-degradation rate of 4-CA from 43.13 % to 62.26 %. Under conditions involving 0.1 % nZVI addition at a 24-hour interval, pH maintained at 7, and glucose as an external carbon source, the microbial biomass, antioxidant enzymes, and dehydrogenase were significantly increased, and the optimal 4-CA degradation rate achieved 68.79 %. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis of intermediates indicated that the addition of nZVI reduced compounds containing benzene rings and enhanced the dechlorination efficiency. The microbial community remained stable during the 4-CA degradation process. This study illustrates the potential of nZVI in co-microbial remediation of 4-CA compounds in the environment.


Assuntos
Compostos de Anilina , Biodegradação Ambiental , Ferro , Poluentes Químicos da Água , Compostos de Anilina/química , Compostos de Anilina/metabolismo , Ferro/química , Ferro/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Purificação da Água/métodos , Bactérias/metabolismo , Nanopartículas Metálicas/química
9.
Ecotoxicol Environ Saf ; 274: 116189, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461579

RESUMO

Throughout the literature, the word "heavy metal" (HM) has been utilized to describe soil contamination; in this context, we characterize it as those elements with a density greater than 5 g per cubic centimeter. Contamination is one of the major global health concerns, especially in China. China's rapid urbanization over the past decades has caused widespread urban water, air, and soil degradation. This study provides a complete assessment of the soil contamination caused by heavy metals in China's mining and smelting regions. The study of heavy metals (HMs) includes an examination of their potential adverse impacts, their origins, and strategies for the remediation of soil contaminated by heavy metals. The presence of heavy metals in soil can be linked to both natural and anthropogenic processes. Studies have demonstrated that soils contaminated with heavy metals present potential health risks to individuals. Children are more vulnerable to the effects of heavy metal pollution than adults. The results highlight the significance of heavy metal pollution caused by mining and smelting operations in China. Soil contaminated with heavy metals poses significant health concerns, both carcinogenic and non-carcinogenic, particularly to children and individuals living in heavily polluted mining and smelting areas. Implementing physical, chemical, and biological remediation techniques is the most productive approach for addressing heavy metal-contaminated soil. Among these methods, phytoremediation has emerged as a particularly advantageous option due to its cost-effectiveness and environmentally favorable characteristics. Monitoring heavy metals in soils is of utmost importance to facilitate the implementation of improved management and remediation techniques for contaminated soils.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Biodegradação Ambiental , Medição de Risco
10.
Sci Rep ; 14(1): 5502, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448471

RESUMO

Phytoremediation is a cost-effective and environmentally friendly method, offering a suitable alternative to chemical and physical approaches for the removal of pollutants from soil. This research explored the phytoremediation potential of Alhagi camelorum, a plant species, for total petroleum hydrocarbons (TPHs) and heavy metals (HMs), specifically lead (Pb), chromium (Cr), nickel (Ni), and cadmium (Cd), in oil-contaminated soil. A field-scale study spanning six months was conducted, involving the cultivation of A. camelorum seeds in a nursery and subsequent transplantation of seedlings onto prepared soil plots. Control plots, devoid of any plants, were also incorporated for comparison. Soil samples were analyzed throughout the study period using inductively coupled plasma-optical emission spectroscopy (ICP‒OES) for HMs and gas chromatography‒mass spectrometry (GC‒MS) for TPHs. The results showed that after six months, the average removal percentage was 53.6 ± 2.8% for TPHs and varying percentages observed for the HMs (Pb: 50 ± 2.1%, Cr: 47.6 ± 2.5%, Ni: 48.1 ± 1.6%, and Cd: 45.4 ± 3.5%). The upward trajectory in the population of heterotrophic bacteria and the level of microbial respiration, in contrast to the control plots, suggests that the presence of the plant plays a significant role in promoting soil microbial growth (P < 0.05). Moreover, kinetic rate models were examined to assess the rate of pollutant removal. The coefficient of determination consistently aligned with the first-order kinetic rate model for all the mentioned pollutants (R2 > 0.8). These results collectively suggest that phytoremediation employing A. camelorum can effectively reduce pollutants in oil-contaminated soils.


Assuntos
Poluentes Ambientais , Fabaceae , Petróleo , Cádmio , Biodegradação Ambiental , Chumbo , Cromo , Níquel , Solo
11.
Bioresour Technol ; 399: 130591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490463

RESUMO

Malachite Green (MG) is a widely used industrial dye that is hazardous to health. Herein, the decolourisation and detoxification of MG were achieved using the engineered Saccharomyces cerevisiae expressing novel thermostable laccase lcc1 from Trametes trogii. The engineered strain RCL produced a high laccase activity of 121.83 U L-1. Lcc1 was stable at temperatures ranging from 20 ℃ to 60 ℃ and showed a high tolerance to organic solvents. Moreover, Lcc1 could decolorize different kinds of dyes (azo, anthraquinone and triphenylmethane), among which, the decolorization ability of MG is the highest, reaching 95.10 %, and the decolorization rate of other triphenylmethane dyes also over 50 %. The RCL decolorized about 95 % of 50 mg L-1 of MG dye in 10 h at 30 ℃. The MG degradation products were analyzed. The industrial application potential of the RCL was evaluated by treating industrial wastewater and the decolourisation rates were over 90 %.


Assuntos
Lacase , Polyporaceae , Corantes de Rosanilina , Trametes , Compostos de Tritil , Lacase/genética , Lacase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Corantes/metabolismo , Biodegradação Ambiental
12.
Sci Total Environ ; 926: 171813, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513868

RESUMO

Oil spills are a global challenge, contaminating the environment with organics and metals known to elicit toxic effects. Ecosystems within Nigeria's Niger Delta have suffered from prolonged severe spills for many decades but the level of impact on the soil microbial community structure and the potential for contaminant bioremediation remains unclear. Here, we assessed the extent/impact of an oil spill in this area 6 months after the accident on both the soil microbial community/diversity and the distribution of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDGNα) genes, responsible for encoding enzymes involved in the degradation of PAHs, across the impacted area. Analyses confirmed the presence of oil contamination, including metals such as Cr and Ni, across the whole impacted area and at depth. The contamination impacted on the microbial community composition, resulting in a lower diversity in all contaminated soils. Gamma-, Delta-, Alpha- proteobacteria and Acidobacteriia dominated 16S rRNA gene sequences across the contaminated area, while Ktedonobacteria dominated the non-contaminated soils. The PAH-RHDαGN genes were only detected in the contaminated area, highlighting a clear relationship with the oil contamination/hydrocarbon metabolism. Correlation analysis indicated significant positive relationships between the oil contaminants (organics, Cr and Ni), PAH-RHDαGN gene, and the presence of bacteria/archaea such as Anaerolinea, Spirochaetia Bacteroidia Thermoplasmata, Methanomicrobia, and Methanobacteria indicating that the oil contamination not only impacted the microbial community/diversity present, but that the microbes across the impacted area and at depth were potentially playing an important role in degrading the oil contamination present. These findings provide new insights on the level of oil contamination remaining 6 months after an oil spill, its impacts on indigenous soil microbial communities and their potential for in situ bioremediation within a Niger Delta's ecosystem. It highlights the strength of using a cross-disciplinary approach to assess the extent of oil pollution in a single study.


Assuntos
Alphaproteobacteria , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Solo , RNA Ribossômico 16S/genética , Níger , Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Alphaproteobacteria/genética , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental
13.
J Hazard Mater ; 469: 133907, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471380

RESUMO

Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Pirenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Bactérias/metabolismo , Biodegradação Ambiental
14.
Chemosphere ; 354: 141672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479680

RESUMO

Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.


Assuntos
Carvão Vegetal , Metais Pesados , Nanopartículas , Poluentes do Solo , Humanos , Cádmio/análise , Biodegradação Ambiental , Metais Pesados/análise , Plantas , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
15.
Int J Biol Macromol ; 264(Pt 1): 130378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428774

RESUMO

Polyethylene is the most commonly used plastic product, and its biodegradation is a worldwide problem. Latex clearing protein derived from Streptomyces sp. strain K30 (LcpK30) has been reported to be able to break the carbon-carbon double bond inside oxidized polyethylene and is an effective biodegradation enzyme for polyethylene. However, the binding of the substrate to the enzyme was difficult due to the hydrophobic nature of polyethylene. Therefore, to further improve the efficiency of LcpK30, the effect of different anchor peptides on the binding capacity of LcpK30 to the substrate was screened in this study. The results of fluorescence confocal microscopy showed that the anchoring peptide LCI had the most significant improvement in effect and was finally selected for further application in a UV-irradiated PE degradation system. The degradation results showed that LCI was able to improve the degradation efficiency of LcpK30 by approximately 1.15 times in the presence of equimolar amounts of protein compared with wild-type. This study further improves the application of LcpK30 in the field of polyethylene degradation by modification.


Assuntos
Látex , Streptomyces , Látex/química , Polietileno , Proteínas de Bactérias/química , Peptídeos/metabolismo , Carbono/metabolismo , Biodegradação Ambiental
16.
Environ Pollut ; 347: 123683, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428797

RESUMO

Remedial actions for groundwater contamination such as containment, in-situ remediation, and pump-and-treat have been developed. This study investigates the hydraulic containment of Trichloroethylene (TCE) contaminated groundwater by using pulsed pump-and-treat technology. The hypothetical research site assumed the operation of pulsed pump-and-treat to manage groundwater contaminated with 0.1 mg/L of TCE. at the pump-and-treat facility. Numerical models, employing MODFLOW and MT3DMS for groundwater flow and contamination simulations, were used for case studies to evaluate the performance and risks of pump-and-treat operation strategies. Evaluation criteria included capture width, removal efficiency, and contaminant leakage. Health risks from TCE leakage were assessed using a vapor intrusion risk assessment tool in adjacent areas. In the facility-scale case study, the capture width of the pump-and-treat was controlled by pumping/injection well operations, including schedules and rates. Pumping/injection well configurations impacted facility efficiencies. Pulsed operation led to TCE leakage downstream. Site-scale case studies simulated contaminant transport through pump-and-treat considering various operation stages (continuous; pulsed), as well as various reactions of TCE in subsurface environment (non-reactive; sorption; sorption and biodegradation). Assuming non-reactive tracer, TCE in groundwater was effectively blocked during continuous operation stage but released downstream in the following pulsed operation stage. Considering chemical reactions, the influences of the pump-and-treat operation followed similar trends of the non-reactive tracer but occurred at delayed times. Groundwater contamination levels were reduced through biodegradation. Cancer and non-cancer risks could occur at points of exposure (POEs) where the contamination levels approached or fell below TCE groundwater standards.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/metabolismo , Poluentes Químicos da Água/análise , Gases , Biodegradação Ambiental
17.
Environ Int ; 185: 108576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490070

RESUMO

Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17ß-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 µM exposures by LDRH increased from 0.03 and 0.02 h-1 to 0.36 and 0.09 h-1, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.


Assuntos
Lacase , Triticum , Humanos , Triticum/metabolismo , Lacase/metabolismo , Rizosfera , Estradiol/metabolismo , Estrogênios/metabolismo , Estrona , Biodegradação Ambiental
18.
J Environ Manage ; 355: 120508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457896

RESUMO

Crude oil contamination has inflicted severe damage to soil ecosystems, necessitating effective remediation strategies. This study aimed to compare the efficacy of four different techniques (biostimulation, bioaugmentation, bioaugmentation + biostimulation, and natural attenuation) for remediating agricultural soil contaminated with crude oil using soil microcosms. A consortium of previously characterized bacteria Xanthomonas boreopolis, Microbacterium schleiferi, Pseudomonas aeruginosa, and Bacillus velezensis was constructed for bioaugmentation. The microbial count for the constructed consortium was recorded as 2.04 ± 0.11 × 108 CFU/g on 60 d in augmented and stimulated soil samples revealing their potential to thrive in chemically contaminated-stress conditions. The microbial consortium through bioaugmentation + biostimulation approach resulted in 79 ± 0.92% degradation of the total polyaromatic hydrocarbons (2 and 3 rings âˆ¼ 74%, 4 and 5 rings âˆ¼ 83% loss) whereas, 91 ± 0.56% degradation of total aliphatic hydrocarbons (C8-C16 ∼ 90%, C18-C28 ∼ 92%, C30 to C40 ∼ 88% loss) was observed in 60 d. Further, after 60 d of microcosm treatment, the treated soil samples were used for phytotoxicity assessment using wheat (Triticum aestivum), black chickpea (Cicer arietinum), and mustard (Brassica juncea). The germination rates for wheat (90%), black chickpea (100%), and mustard (100%) were observed in 7 d with improved shoot-root length and biomass in both bioaugmentation and biostimulation approaches. This study projects a comprehensive approach integrating bacterial consortium and nutrient augmentation strategies and underscores the vital role of innovative environmental management practices in fostering sustainable remediation of oil-contaminated soil ecosystems. The formulated bacterial consortium with a nutrient augmentation strategy can be utilized to restore agricultural lands towards reduced phytotoxicity and improved plant growth.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Solo/química , Ecossistema , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo , Microbiologia do Solo
19.
Environ Geochem Health ; 46(3): 103, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436752

RESUMO

In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 µg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Pequim , Biodegradação Ambiental , Carcinogênese , Carcinógenos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solo , Testes de Toxicidade
20.
Sci Total Environ ; 923: 171458, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438035

RESUMO

Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.


Assuntos
Arsênio , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Poaceae/metabolismo , Carvão Vegetal , Bactérias/metabolismo , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA